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Effective field theory of the zero-temperature triangular-lattice antiferromagnet:
A Monte Carlo study
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Using a Monte Carlo coarse-graining technique introduced by BifdlePhys. B43, 119(1981)], we have
explicitly constructed the continuum field theory for the zero-temperature triangular Ising antiferromagnet. We
verify the conjecture that this is a Gaussian theory of the height variable in the interface representation of the
spin model. We also measure the height-height correlation function and deduce the stiffness constant. In
addition, we investigate the nature of defect-defect interactions at finite temperatures, and find that the two-
dimensional Coulomb gas scenario applies at low temperatures.

PACS numbgs): 05.70.Jk, 05.56:q, 05.10.Ln, 02.70.Lq

I. INTRODUCTION the defect-defect correlation functions. Section VI presents
our conclusions and directions for future work.

In recent years, there has been considerable interest in the
study of classical spin systems with critical ground states. ||. CELL DISTRIBUTION FUNCTIONS AND COARSE-
One of the best studied of these is the triangular-lattice Ising GRAINED FREE-ENERGY FUNCTIONALS
antiferromagne{TIAFM) [1]. The critical behavior of these o ) o
models can be understood based on an interface representa-Kaski, Binder, and Guntof®,10] have studied cell distri-
tion and an “effective” field theory which is Gaussian in the bution functions of the three-dimensional Ising model on a
height variable[2,3]. In this paper we present an explicit cubic lattice and constructed coarse-grained Ginzburg-
construction of the effective field theory based on the study-andau Hamiltonians. In this section we review this tech-
of Monte Carlo cell distribution function@] of the TIAFM. ~ hique and present the results of its application to the trian-
To accomplish this, a height mappif§] is applied to the gular Ising ferromagnet as an example. We will describe the
system and this variable is then coarse grained to obtain fappllcatlon of this technique to the zero-temperature TIAFM
continuum field theory. Our interest in this model was stimu-in Sec. ll. _ _ o _
lated by the observation of anomalously slow dynamics in Given a microscopic Hamiltonian such as the Ising
the compressible TIAFM6]. In that model the supercooled Model, Monte CarldMC) methods can be used to sample
state exhibits an ergodicity-breaking transition which isthe distribution functionsP\ ({s;}) of the coarse-grained
reminiscent of the structural-glass transition. This glassy bevariables
havior is believed to arise from the interaction between
strings and vortice$7], the topological defects present in s-=i E S
these models at finite temperature. In the pure TIAFM ' LZ,Eith '
model, the Gaussian theory implies that the vortices interact
as charges of a two-dimension@D) Coulomb gag8]. We  whereS; are the original microscopic spin variables, such as
have analyzed the defect-defect correlation function at finitéhe Ising spins on the original lattice, ahds the cell size.
temperatures to investigate the nature of the defect interad-he distributionsP| ({s;}) are assumed to be of the form
tions. The 2D simulations are consistent with the Coulomke™# with F having the Ginzburg-Landa(yGL) form in
gas picture at low densities of defects. terms of the coarse-grained variables}. This assumption

The motivation behind this numerical study wdsto test  is expected to be valid whedr=a (lattice spacingbut much
the Monte Carlo cell distribution function technique in a smaller than the correlation length, such that the coarse-
model where the effective field theory is well established andyrained variables do not fluctuate rapidly from cell to cell. If
(2) to establish a framework for the construction of effectiveone could sample the total distribution function in MC simu-
field theories and effective defect-defect interactions in mod#ations, then this connection could be exploited for the ex-
els such as the compressible TIAFM where no adequate fielglicit construction of the GL Hamiltonian by simulating the
theory description exists. microscopic model. Sampling the total distribution function

The paper is organized as follows. In Sec. Il we describés essentially an impossible task and therefore, we have fol-
the cell distribution function technique. In Sec. Il we presentlowed Binder[10] in studying the two simplest reduced dis-
results from the coarse-grained free-energy functional anttibution functions, the single cell and the joint, nearest-
compare our results to the Gaussian theory. In Sec. IV waeighbor, two-cell distribution functions which are then
verify the Gaussian theory from a study of the height-heightpparametrized by the GL form. To illustrate how the cell dis-
correlation function and in Sec. V we describe the study oftribution function method works, we briefly describe its ap-
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plication to the triangular Ising ferromagnet in zero magnetic 2
field, where we choose the model system size to be &D

with periodic boundary conditions and the cell size® be

4, 8, 10, 16, 20, and 40.

The microscopic Hamiltonian is 1l
Hising= =92 SS/.
I#1’
) E-n o
The total distribution functiorP, ({s;}) is assumed to be 3 L
c----eL;10 ‘} AN
1 — Fo dsh) —| a6 \l‘b \\
PL({si})= e Teclish, D Ll N
whereZ is the partition function and the GL Hamiltonian has
the form
J— — _2 !
]-‘GL({si})=2i (r_,_si2+u,_si4)+<2> c,_(si—sj)Z, (2) 2 3 T 4 5
ij

The two reduced distribution functions, which are amenable F!G- 1. The ratior (T)/u (T), calculated from the joint distri-
to numerical calculations, are the two-cell joint distribution bution function for different cell sizesl(L) is identified as the

function P_(s; ,s;) and the single-cell distribution function PO wherer, /u=0. The exact result fof (<) is 3.6[11]. The
temperature is plotted in units dfkg andr_/u is dimensionless

PL(si), [cf. Egs.(5) and(7)].
PL(s; ,Sj)=f |1;[| dsP.({si}), 3) T.(L) where the sign of the ratio changes. Thdependence
el of T.(L) agrees with finite size scaling predictiof. The

w variation of ¢, (T)/u (T) with cell sizeL (Fig. 2 shows

temperature-dependent behavior as the size of the cells ap-
PL(Si):f PL(si,s))ds;. (4 proach infinity. For temperatures aboVg(«), the ratio ap-
The parametrization of the effective Hamiltonian is ac- 15
complished by samplin@, (s;,s;) andP(s;),
+—<aT=28
B T=3.1
1 ) e--oT-35
P (si,s))= TG‘XD{_[CL(SFSJ) +Vi(s)+Vi(s)l} ToiTes
1.0 | :
(5 s
T=3.8
1
PL(Si) = ?eiVL(Si)’ (6) T=4.0
E:: 05 - % T=4.2
whereZ’ andZ” are normalization factors, and e T=45
Vi(s)=r.sf+ust. N
0.0 f

Ther_ andu, obtained fromP(s;,s;) andP(s;), respec-
tively, can be different since the effect of the gradient term
has been integrated over in the single-cell distribution func-
tion. Similar considerations imply that these coefficients can
be different fror‘rﬂ , U, andﬁ in Eq. (2). qu small values -05 oo s 020 025
of ¢, , the coupling between different sites is small and all of

these coefficients are expected to be approximately equal p
[10]. The coefficients| , u,, andc,, as functions of tem- L

perature(T) a_md_ Cel_l size(L), _Can be estimated by fitting the FIG. 2. The ratioc, (T)/u (T), calculated from the joint distri-
measured distribution functioR, (s;,s;) to the model form  pytion function for different temperatures, plotted as a function of
[Eq. (5)]. It is well known that a temperature-driven second| -1 The length is measured in units of the lattice spacing and
order transition exists for this Ising model and the exact rec, /u, is dimensionless. The curves can be divided into two groups.
sult for T() =3.6[11]. Figure 1 shows | (T)/u (T) as a For those with temperatures higher thg(e)= 3.6 (identified in
function of temperature for different cell sizes. There is clearhe figure, the curves converge to a finite value. For those with
evidence for a temperature-driven second order transition aémperatures lower thaf.(>), the curves converge to zero.
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d1 these height variablel} can be written directly from the
Y mapping ag2]
2/ %) z _
/ // vv H{Z|} J(iEj) (3 2|ZI ZJ|).
/) AA
/ / AVAV The symmetries of the original Hamiltonian are reflected in
H{z}. These include Ising up-down symmetry and sublat-
(a) (b) tice symmetry. In addition}{z} has a symmetry with re-

. o spect to global, discrete shifts of the height variable. A de-
FIG. 3. (8 The three nearest-neighbor directiaths, dz, d3,  tailed discussion of these symmetries can be found iiteBlo
and the six nearest nelghbdruack dOt$ of discrete he|ght varl- and nghtlngald:s] An |nterest|ng property of this mapplng

ablesz; (open circlg¢ mapped onto the rhombus-shaped lattice useqdg that for any ground state the height variable modulo 3 is
in the simulation.(b) The coarse-graining cell of size=2. The the same for all spins on the same sublattice.

vertices(black dots of lattice are{z;} and the centers of the trian- Starting from{z}, we can define a new set of height
gular plaquettesopen squageare{H,.}, each of which s defined as variables{H ,} that are situated on the dual lattice, by aver-

the average of the three surroundiag variables. The coarse- aging the three neiahborirm on each trianqular plaguette:
grained height variablé, is defined as the average of all thg, 9 gl 9 ng 9 plad '
: A H,=3(z;+2,+23) wherez,, z,, andz; are on the three

variables within this cell. K, S .
vertices of theuth plaquettg12] as shown in Fig. 3. Since

. . o the sum ofz,, z,, andz; are multiples of 3, th¢H ,} is a set
proaches a nonzero fixed point laspproaches infinity. For ¢ integers.

al! other temperatures, Fhis_ rat_io approgches zero. The sam- \y/o apply the coarse-graining technique to the height vari-
pling of the single-cell distribution functioR\ (s;) [Ea. ()] aplesfH }. The coarse-graining cell is chosen to be a rhom-
leads to similar results for, andu,, which is consistent p,s with the linear siz& and the coarse-grained height vari-

with the small value obtained far_. These results support ables{h;} are defined as the average of all g within the
the assumptions that went into the constructiotFgf ({s;}). cell,

The results of this section will be contrasted with the frus-
trated antiferromagnetic case in Sec. lll. The application of 1
the distribution-function technique to the TIAFM is based on h== > H,,
the mapping to an interface model and height variables. The N T “
coarse graining of these height variables and the GL param-

etrization are described in Sec. IlI. whereN is the total number of, variables within theith
cell. The coarse-graining cell is depicted schematically in
Fig. 3. AsL approaches infinity, théh;} become continuous
l. RESULTS OF COARSE GRAINING variables. The effective field theory is based on these con-
AND COMPARISON WITH THE GAUSSIAN THEORY tinuous variablegh;}, which describe the roughness of the
A. Height variables and coarse graining atT =0 interface. In the rough phase of the interface model, the av-
erage tilt of the interface, which is defined as the difference
between(h,,) and(h,) with the mth cell and thenth cell
t§Sparated by the system size, is zero. For an arbitrary spin
configuration, a tilt can be frozen [5]. We will avoid such
onfigurations in our simulations. Als@h;)} may be non-
ero for a general choice of height origin and the Hamil-
tonian should only depend on the fluctuation-(h;) [5].

pei

One interesting property of the TIAFM is that the ground
state ensemble has a one-to-one mapping onto an interfa
model[2,3,5]. This provides a simple way of studying the
properties of zero-temperature TIAFM.

The discrete variables in the interface model are heighg
variables{z}, which are defined on each site of the triangu-

lar lattice. The mapping from the TIAFM to an interface We performed Monte Carlo simulations on a system of

model is realized by the mapping from spin vari.at{ISQ 0 size 600<600 shaped as a rhombus and looked at cell sizes
height variables{z}. Specifying the height variable to be 10, 15, 20, 30, 40, 50, 60, 75, and 100. We set the initial

zero at a chosen site, the following rulgsig. 3 provide a configuration to be one of the flat sta{d2], where{H ,} is

unique mapping fro{ S} to {2}. uniform in space. The dynamics we use in the simulation is
(1) Along the d, direction, Az=—1 for opposite spins single spin-flip Mgtropolis algorithm at zero temperature,

andAz=+2 for same spins. where the energy is not allowed to increase and thus not all
(2) Along the d, direction, Az=—1 for opposite spins SPINs are flippable. The first 20000 configurations are dis-

andAz=+2 for same spins. carded to ensure that measurements are taken in equilibrium.

(3) Along the d5 direction, Az=+1 for opposite spins The time independence of average quantities such as the
andAz=—2 for same spins. staggered magnetization was used as evidence that the sys-

tem has relaxed to its equilibrium state. The sampling is done
These height assignments are unique up to the choice @very ten MC steps and for a total of 6000 configurations.
origin as long as we restrict ourselves to Ising configurationsSince we use single spin-flip MC dynamics, the average tilt
in the ground state ensemble, which is the set of states th& unchanged from its initial value of zero during the MC
do not have any completely frustrated plagueti@ spins  runs[13]. In the following sections, we will usk; to repre-
are the same The microscopic Hamiltonian in terms of senth;—<(h;).
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B. Results and comparison with the Gaussian theory

It has been conjecture®,3] that in terms of the height

variables, the continuum theory for the zero temperature

TIAFM is Gaussian,
A= [ drg (vh(n) )2 ®

with a value ofc= #/9. This stiffness constant was identified

by Blote et al. [5] through the correspondence between the
exact calculation of the spin-spin correlation function in the

spin model[14] and the discrete height-height correlation
function in real space in the interface modBl. The stiff-
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0.0003

0.0002 -

P.(h,h*)

0.0001

ness constant was also obtained numerically by Zeng and
Henley from measurements of the discrete height correlation FIG. 4. The cuts of the probability distributioR, (h,h*) for

function in Fourier spacgL2]. In this section we deduce the

cell sizeL =50 and different values df*, demonstrating the domi-

stiffness constant by an explicit construction of the coarsenance of the gradient terfaf. texf). The heighth is a dimensionless

grained free energy.
Assuming a Ginzburg-Landau form for the Hamiltonian
in terms of the continuous height variables,

a c
f(h(r*))=fdr[§h<r>2+5whm]2 SO
we proceed to obtaim andc from our simulations by pa-

rametrizing the joint distribution function of the coarse-
grained height variableBy (h; ,h;).

quantity.

order gradient terms by measuring the non-Gaussian param-
eter (,) in the distribution ofv =3 (h;—h;),

_ <U4>L
3w

[ (12

We findg, to be much smaller than 1, which is consistent
with the assumed form of the gradient term in the joint dis-

As in the triangular ferromagnet, we study the nearestiribution function. Extracting quantitative information about

neighbor joint distribution function of heights,

PL<hi,hj>=f Hi dhP_({h}), (10)

1#]

(ij)
where P, ({h;}) is the total cell distribution function. We
parametrize the joint distribution function as

1 2 2, 12
PL(hi hj) = —7exp{—[ci(hi—hy)*+a (hi+h)],
11

whereZ’ is a normalization factor.

Anticipating a critical point atfT=0, wherea, —0, we
have neglected the quartic term in Ed.1). This will be
justified a posteriori from our numerical study. From the
joint distribution function, we can extrae} andc, as in the
ferromagnetic Ising model.

We examine a typicaP, (h,h*) for cell sizeL=50. One-
dimensional cuts oP (h;,h;) at different fixed values;

the coefficientsa, andc, from fits to the distribution func-
tions turns out to be difficult because of the essential two-
dimensional nature of the distribution functid? (h;,h;)

(c_ is large. Instead, we resort to measurement of moments
for extracting quantitative information.

The parameterg, andc, can be related to the moments
of {h;}. We have calculated various moments of these
coarse-grained variables directly from the MC simulations.
In general, the parametrization of the joint distribution func-
tion [such as Eq(11)] provides a connection between these
moments and the coefficients of the GL Hamiltonian. For the
model of Eq.(11), the relation betweea, andc, and the
moments can be shown to be

—h* are shown in Fig. 4. The peak and shape of the cuts caff"P!ying that

be deduced from the distribution functipq. (11)] which is
a product of two Gaussians, expg h? and exp—c.(h
—h*)?]. Whenh* differs from 0 by a large amount, the plots

1
200+ (hahg)) w
(hahy)
= , 14
(M (B
o (hihy) 15

aL ((h?—(hshy))’

in Fig. 4 show that the actual peak of the cut is much closer

to h* than to 0, which implies that the efxpc, (h—h*)?] is

Hereh, andh, refer to coarse-grained height variables on

the dominant term in the product of Gaussians and th@&earest-neighbor cells separated by the coarse-graining cell
exp(—a h? term acts more as a prefactor modulating thesize L. These relations, between the parametgrsand ¢,
amplitude of the peak. The width of the cut is also seen to band the moments, also provide the connection betvagen

determined mainly by, . Figure 4 indicates that, is small

and ¢, and the corresponding parametersandc in con-

compared wittt, . We also analyze the importance of higher tinuum field theories such as in E(R). Using the known
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FIG. 5. Plots ofa, =a, /L? for different cell sizes. The open
circles are the data points and the solid line is the second degree FIG. 6. Plots ofc, /L? for different cell sizes. The open circles
polynomial fit. The error bars are obtained from the standard deviaare the data points and the solid line is the second degree polyno-

tions calculated from appropriate higher momenth;adndh; . The  mial fit. The error bars are the standard deviations calculated from
fitting of a, /L? leads to a constant term with a value of 6.183E-6, appropriate higher moments ¢f and h;. The fitting of c_ /L2

which implies that the quadratic term in the field thearycf. Eq.  leads to a quadratic term with a coefficient 0.622, and vanishingly
(16)] becomes vanishingly small &s—. The length is measured small constant and linear terms, which implies that the gradient
in units of the lattice spacing ara] is dimensionless. term of the continuous theofgf. Eq. (17)], ¢ approaches 0.392 as

L—oe. The length is measured in units of the lattice spacing and
expressions for the correlations functions in the continuunt,_ is dimensionless.
model in two dimension§l5], these relations are

These results for the parameters obtained from our analy-

a=4al (16) sis of the moments are completely consistent with the quali-
and tative behavior deduced from the joint distribution functions,
P.(h;,h;), shown in Fig. 4.
B In( ) The results shown in Figs. 5 and 6 verify the Gaussian
C=2Wj CL. (17) nature of the continuum theory. The numerical valuecof

extracted by applying Eq.17) to the fitted value ofc, is
0.392, which is in very good agreement with the conjectured

The factorwy=v3/2 arises from the volume per unit cell in stiffness constant of/9—0.349[2.3].

the triangular lattice. The prediction from the Gaussian
theory isa=0 andc= #/9. We expect that, if the Gaussian

theory is correct, thel should approach zero amdshould IV. HEIGHT-HEIGHT CORRELATION FUNCTION
remain constant as—oc. Because of the connection to the
continuum theonyfEq. (16)], it is natural to fita, /L? to a In this section we will briefly present our calculation of

second-order polynomial in L/ The results of the fitting are the correlation function of height variables in Fourier space,
shown in Fig. 5. The value & can be deduced from the 1-e., the power spectrum of the height variable, which can be
constant term extracted from the fitting and is found to beused to deduce the stiffness constant as in the investigation
6.183< 1076, implying that the quadratic term in the Of Zeng and Henley12]. In Sec. V we further extend this
Ginzburg-Landau Hamiltonian becomes negligible las technique to study the defect-defect interactions at finite tem-
—oo, It is difficult to extract the value oF from the mea- Peratures by measuring the defect density correlation func-
sured values of, because of the fact that the errors increasd!on. _ .

with L [16]. If, instead, we analyze, /L2, the error bars  AS implied by Eq.(8), the stiffness constant of the
actually decrease with lL/as seen from Fig. 6, and this pro- interface moqel can 'be d|recFIy reIaFed to the correlation
vides a more precise way of determining the valugofs  function of height variablegh;} in Fourier space,

shown in Fig. 6, the data far, /L? can be fit very well to a

second-order polynomial in L/with vanishingly small coef- < <

ficients of the constant and linear term i 1/The value of f(h(F))=f dFE[Vh(F)]2=Z E|(j|2|h(ci)|2. (18

c_ obtained from this fit is 0.622. The standard deviations, 4

calculated from the appropriate higher momentshpfand

h;, based on Eqg13) and(14), are plotted as error bars. Thus, the correlation functiof| h(q)|2> is
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40

(Ih(@)|*)= (19)

1
cldl*

The stiffness constart can be extracted from a knowl- 0s
edge of (|h(§)|?). Numerical measurements ¢th(g)|?) 30 ¢
are, however, arduous, and instead, we study the correlation
function of the discrete height variable§H (G)|?), which
should resemblé|h(q)|?) for smallq except for a factor of
v3/2 coming from the volume per lattice site. Therefore, the
(|H(d)|?) for smallq can be written as

. ]

(IH@3=——3, (20)
cld
where
2 _
c=—CcC. (21
V3 8
2
We simulate a system of size 24Q@40. We start with the q

same flat states as the ones used in the coarse-graining simu-

<)[2y—1 512 i

lations. After discarding the first 20000 configurations and, F'ﬁ{ 7 Flot]:stof<_|g_|(q)| ) \llsd|?| ‘ ID'ﬁe(rff?t da:ad_seti_ are.

again, ensuring that equilibrium has been reached, the simgo (e cuts of two-dimensional data along citierent directions In
space. The correlation function shows significant anisotropy for

lations are sampled at every 10 MC steps for a total of 800(512>1 6. The value of:=0.414+0.016 is obtained from the fitting
configurations. For each sampled configuration we calculatgf cur.vés in the regiomz%o_z to-a second-degree polynomial in
|H(d)|, the tWO-L:iimensional Fourier transform of the dis- g?. The stiffness constart deduced from this fit is 0.360. The
crete height variablegH,} (cf. Sec. lllA) and average \aye vector is measured in units of the inverse lattice spacing and
[H(4)|? over the sampled MC configurations. H(q) is dimensionless.

For simplicity, one-dimensional cuts of|H(G)|?) !

along different directions il space are shown in Fig. 7. As sponding to the two different orientations of the frustrated
seen from Fig. 7, different cuts collapse on top of one anyijangular plaguettes. These vortex excitations interact like
other only for small values aj?. This is due to the fact that charges via a two-dimensional Coulomb poteni&8].
the correlation function is isotropic for small values @f An alternative to the Gaussian description is, therefore, a
begause of the sixfold rotqtional symmetry of the triangularcoylomb gas description involving electric and magnetic
lattice. As seen from the inset, the anisotropy starts to b@harges corresponding to spin waves and vortices, respec-
significant wheng®>1.6. Wg have fitted|H(d)|?) " to @  tively [3,8]. This connection suggests that extracting effec-
second-order polynomial ig®, restricting the fitting region  tjve defect-defect interactions could be an alternative to con-
to q*<0.2. A value ofc=0.414+0.016 was extracted from structing coarse-grained free energies. In complicated
the linear term of the fit. The nonlinear terms were small, andnodels and especially in analyzing dynamics, this might be
an estimate of the error anwas obtained from the standard the more viable alternative. We therefore wanted to numeri-
deviation of the linear term extracted from fits to different ca|ly extract the effective vortex-vortex interaction in the
segments of the curveg|{<0.2). From Eq.(21), the stiff-  TIAFM and verify the Coulomb gas scenario.
ness constant can be deduced t@b.360, compared with In the regime of low defect density, where mean field
0.392 from our previous real space coarse-graining approaafieory is expected to hold, the effective interactions can be
and /9= 0.349 from Blde and Hilhors{5]. related to the density-density correlation functid]. The
The similarity of the results obtained from the real-spaceappropriate mean-field theory for our system with positive
analysis and the power-spectrum analysis is quite remarkablgnd negative charges is Debyédhie theory[17] which

and underlines the strength of these numerical techniques. fredicts that the charge-density correlation function has the
comparison of the two different analysis techniques, howfollowing form:

ever, makes it clear that the power-spectrum analysis is sim-

pler to implement and is the more desirable technique. The 2 2

question of how well either of these techniques will fare {lp(q)|?)=-— a , (22
. - . . . A7 24 2
when applied to a model with general nonlinear interactions, qQ°t+ K
where very little is known analytically, is still open.
where
V. DEFECT INTERACTIONS
k*=4m((n;)+(n-)) (23)

At finite temperatures, there are completely frustrated )
plaguettes which can be viewed as vortex excitations in thés the square of an inverse Debyedtie screening length.
height variablg2,3]. There are two types of vortices corre- (n..) are the average densities of positive and negative
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005 a1 Ab e iR o
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T=1.0
0 ; . . FIG. 9. Plots of the charge density correlation functionTat
0 1000 2000 3000 4000 =1.0, 1.2, 1.5, and 2.0. The data points are taken from cuts of

t two-dimensional data along one chosen direction since we did not

FIG. 8. The relaxation of defedhumbej density in the first qb§erve any anisot__rop(}cf. texy, and the 30"‘?' I.ines are frorzn the
4000 MC steps at different temperatures. As seen from the plotéc't_tlngs to a Debye-Hokle forgn[Eq.(ZZ)]. The_flttlngs lead t?f at
defect densities relax to their equilibrium values by 4000 MC stepéj'fferent temperatures. Thef and the analytical values of; ex-
and fluctuate around it. The average defect density is 0.003, 0.03§acted from the total defect density for the same temperdaire
0.051, 0.0781, and 0.110, respectively, Tor 0.6, 1.0, 1.2, 1.5, and Eq. (23)] are shown in Fig. 10. The inset shows the fitting at the

2.0. The defect density is dimensionless and the time is measured mwest temperature] =0.6, where th? Qefect density is_0.003 ar_wd
units of Monte Carlo steps. the results suffer from a lack of statistics. The correlation function

{|p(q)|?) is dimensionless anglis measured in units of the inverse
lattice spacing.

charges andp(q)=n,(q)—n_(q), wheren.(q) are the

Fourier transform of the real space charge density functions.

If the vortices in our model behave as a Coulomb gas, 20
then we expect to find this behavior of the charge-density
correlation function at low temperatures where the vortex o—o «, (fit)
density is low. 3—=a «°, (analytical)
We studied the charge density correlation function in a 15 |

manner similar to that employed in the preceding section for
studying the height-height correlation function. The MC
simulations were performed on a 12220 system and after
discarding the first 10000 configurations, samples were
taken every five configurations. Figure 8 shows the typical =~y 1.0}
defect density relaxations at different temperatures investi-
gated in MC and it is clear that the time scale we choose to
equilibrate the system is adequate. The correlation function,
{Ip(a)|?), was measured at several temperatures.

The simulation results are shown in Fig. 9 along with the 05 ¢
fits to the Debye-Hekle form[Eq. (22)]. The figure shows a
one-dimensional cut df p(q)|?) along a particular direction.

In contrast to the height power spectrum, the defect density
power spectrum was found to be isotropic within the range ) ,
of g studied. The Debye-Hikle theory models the data well 0.5 1.0 1.5 2.0

for all temperatures except the lowest temperatiire 0.6, T

which is shown in the inset. The lowest temperature data is G, 10, Plots of?, the inverse screening length obtained from
suspect because the defect density is low and statistics afiting compared tocZ, the value obtained from E¢23). The two
difficult to obtain. The isotropy of thé|p(q)|?) data imply  curves deviate significantly only at the highest temperature where
that the screening length and, therefore, the interactions bene defect picture itself starts to break dovaf. tex). The screen-

tween the defects on the triangular lattice is isotropic dowring length is measured in units of the lattice spacing sl mea-
to length scales of the order of the lattice spacing. sured in units of)/kg .
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From the fits to the Debye-Htlle theory the inverse work confirms that the effective field theory is Gaussian in
square of the screening lengtk can be extracted and com- terms of the coarse-grained height variables and we obtain a
pared to the analytic form given in E(23), which uses as an numerical estimate of the stiffness constant which is in a
input the measured defect density. In Fig. 10, the fitted valgood agreement with the analytical prediction. The connec-
ueSKf and the analytic value}sf1 are plotted versus tempera- tion between the parameters in joint distribution function and
ture. Except at the highest temperatufes 2.0, the agree- the moments of height variables eliminates the arduous work
ment between the two different estimates is very goodof directly relating the parameters of joint distribution func-
Interestingly, the temperature at which the twts differ  tion to those of the total distribution function. We also di-
significantly from each other is also where the defect densityectly measured the power spectrum of the height and ob-
differs from a simple Arrhenius prediction corresponding totained a value of the stiffness constant, which is very close to
an activation energy of 3 the single-defect creation energy. the analytic prediction and the estimate from the real-space
The observation of the large defect densityTat2.0,{(n.) coarse graining. This suggests that the measurement of the
+(n_)=0.110, indicates that the defects are covering thepower spectrum might provide a simple route towards the
whole lattice at this temperature and the single-defect pictureonstruction of effective field theories. We also demon-
becomes inappropriate. strated that effective defect-defect interactions can be ex-

These numerical studies show that it is possible to extradracted from numerical studies of the defect-density power
effective defect-defect interactions from measurements of thepectrum.
defect-density power spectrum and verifies that the interac- The compressible TIAFM19,20 is currently being stud-
tion, in the TIAFM, is Coulombic. A numerical measurementied using these techniques. The effective field theory and
of the force between defects has been made via a study of titefect-defect interactions in this model are of interest for the
dynamics of the defects in TIAFNILS]. This study could not  study of alloys with the elastic interactions, and for the study
confirm the existence of a Coulomb force from the behavioof glassy dynamic$6].
of the defect density at long times; however, it was argued
that the force could not be falling off more slowly tham.1/
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