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Effective field theory of the zero-temperature triangular-lattice antiferromagnet:
A Monte Carlo study

Hui Yin and Bulbul Chakraborty
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Nicholas Gross
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Using a Monte Carlo coarse-graining technique introduced by Binder@Z. Phys. B43, 119 ~1981!#, we have
explicitly constructed the continuum field theory for the zero-temperature triangular Ising antiferromagnet. We
verify the conjecture that this is a Gaussian theory of the height variable in the interface representation of the
spin model. We also measure the height-height correlation function and deduce the stiffness constant. In
addition, we investigate the nature of defect-defect interactions at finite temperatures, and find that the two-
dimensional Coulomb gas scenario applies at low temperatures.

PACS number~s!: 05.70.Jk, 05.50.1q, 05.10.Ln, 02.70.Lq
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I. INTRODUCTION

In recent years, there has been considerable interest in
study of classical spin systems with critical ground stat
One of the best studied of these is the triangular-lattice Is
antiferromagnet~TIAFM ! @1#. The critical behavior of these
models can be understood based on an interface repres
tion and an ‘‘effective’’ field theory which is Gaussian in th
height variable@2,3#. In this paper we present an explic
construction of the effective field theory based on the stu
of Monte Carlo cell distribution functions@4# of the TIAFM.
To accomplish this, a height mapping@5# is applied to the
system and this variable is then coarse grained to obta
continuum field theory. Our interest in this model was stim
lated by the observation of anomalously slow dynamics
the compressible TIAFM@6#. In that model the supercoole
state exhibits an ergodicity-breaking transition which
reminiscent of the structural-glass transition. This glassy
havior is believed to arise from the interaction betwe
strings and vortices@7#, the topological defects present
these models at finite temperature. In the pure TIAF
model, the Gaussian theory implies that the vortices inte
as charges of a two-dimensional~2D! Coulomb gas@8#. We
have analyzed the defect-defect correlation function at fi
temperatures to investigate the nature of the defect inte
tions. The 2D simulations are consistent with the Coulo
gas picture at low densities of defects.

The motivation behind this numerical study was~1! to test
the Monte Carlo cell distribution function technique in
model where the effective field theory is well established a
~2! to establish a framework for the construction of effecti
field theories and effective defect-defect interactions in m
els such as the compressible TIAFM where no adequate
theory description exists.

The paper is organized as follows. In Sec. II we descr
the cell distribution function technique. In Sec. III we prese
results from the coarse-grained free-energy functional
compare our results to the Gaussian theory. In Sec. IV
verify the Gaussian theory from a study of the height-hei
correlation function and in Sec. V we describe the study
PRE 611063-651X/2000/61~6!/6426~8!/$15.00
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the defect-defect correlation functions. Section VI prese
our conclusions and directions for future work.

II. CELL DISTRIBUTION FUNCTIONS AND COARSE-
GRAINED FREE-ENERGY FUNCTIONALS

Kaski, Binder, and Gunton@9,10# have studied cell distri-
bution functions of the three-dimensional Ising model on
cubic lattice and constructed coarse-grained Ginzbu
Landau Hamiltonians. In this section we review this tec
nique and present the results of its application to the tri
gular Ising ferromagnet as an example. We will describe
application of this technique to the zero-temperature TIAF
in Sec. III.

Given a microscopic Hamiltonian such as the Isi
model, Monte Carlo~MC! methods can be used to samp
the distribution functionsPL($si%) of the coarse-grained
variables

si5
1

L2 (
l P i th

Sl ,

whereSl are the original microscopic spin variables, such
the Ising spins on the original lattice, andL is the cell size.
The distributionsPL($si%) are assumed to be of the form
e2bF with F having the Ginzburg-Landau~GL! form in
terms of the coarse-grained variables$si%. This assumption
is expected to be valid whenL@a ~lattice spacing! but much
smaller than the correlation length, such that the coa
grained variables do not fluctuate rapidly from cell to cell.
one could sample the total distribution function in MC sim
lations, then this connection could be exploited for the e
plicit construction of the GL Hamiltonian by simulating th
microscopic model. Sampling the total distribution functio
is essentially an impossible task and therefore, we have
lowed Binder@10# in studying the two simplest reduced di
tribution functions, the single cell and the joint, neare
neighbor, two-cell distribution functions which are the
parametrized by the GL form. To illustrate how the cell d
tribution function method works, we briefly describe its a
6426 ©2000 The American Physical Society
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PRE 61 6427EFFECTIVE FIELD THEORY OF THE ZERO- . . .
plication to the triangular Ising ferromagnet in zero magne
field, where we choose the model system size to be 80380
with periodic boundary conditions and the cell sizesL to be
4, 8, 10, 16, 20, and 40.

The microscopic Hamiltonian is

HIsing52J(
lÞ l 8
^ l l 8&

SlSl 8 .

The total distribution functionPL($si%) is assumed to be

PL~$si%!5
1

Z
e2FGL~$si %!, ~1!

whereZ is the partition function and the GL Hamiltonian ha
the form

FGL~$si%!5(
i

~ r̄ Lsi
21ūLsi

4!1(̂
i j &

c̄L~si2sj !
2. ~2!

The two reduced distribution functions, which are amena
to numerical calculations, are the two-cell joint distributio
function PL(si ,sj ) and the single-cell distribution functio
PL(si),

PL~si ,sj !5E )
lÞ i
lÞ j
^ i j &

dsl PL~$sl%!, ~3!

PL~si !5E PL~si ,sj !dsj . ~4!

The parametrization of the effective Hamiltonian is a
complished by samplingPL(si ,sj ) andPL(si),

PL~si ,sj !5
1

Z8
exp$2@cL~si2sj !

21VL~si !1VL~sj !#%,

~5!

PL~si !5
1

Z9
e2VL~si !, ~6!

whereZ8 andZ9 are normalization factors, and

VL~si !5r Lsi
21uLsi

4. ~7!

The r L anduL obtained fromPL(si ,sj ) andPL(si), respec-
tively, can be different since the effect of the gradient te
has been integrated over in the single-cell distribution fu
tion. Similar considerations imply that these coefficients c
be different fromr̄ L , ūL , andc̄L in Eq. ~2!. For small values
of c̄L , the coupling between different sites is small and all
these coefficients are expected to be approximately e
@10#. The coefficientsr L , uL , andcL , as functions of tem-
perature~T! and cell size~L!, can be estimated by fitting th
measured distribution functionPL(si ,sj ) to the model form
@Eq. ~5!#. It is well known that a temperature-driven seco
order transition exists for this Ising model and the exact
sult for Tc(`)53.6 @11#. Figure 1 showsr L(T)/uL(T) as a
function of temperature for different cell sizes. There is cle
evidence for a temperature-driven second order transitio
c
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Tc(L) where the sign of the ratio changes. TheL dependence
of Tc(L) agrees with finite size scaling predictions@4#. The
variation of cL(T)/uL(T) with cell size L ~Fig. 2! shows
temperature-dependent behavior as the size of the cells
proach infinity. For temperatures aboveTc(`), the ratio ap-

FIG. 1. The ratior L(T)/uL(T), calculated from the joint distri-
bution function for different cell sizes.Tc(L) is identified as the
point wherer L /uL50. The exact result forTc(`) is 3.6 @11#. The
temperature is plotted in units ofJ/kB and r L /uL is dimensionless
@cf. Eqs.~5! and ~7!#.

FIG. 2. The ratiocL(T)/uL(T), calculated from the joint distri-
bution function for different temperatures, plotted as a function
L21. The length is measured in units of the lattice spacing a
cL /uL is dimensionless. The curves can be divided into two grou
For those with temperatures higher thanTc(`)53.6 ~identified in
the figure!, the curves converge to a finite value. For those w
temperatures lower thanTc(`), the curves converge to zero.
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6428 PRE 61HUI YIN, BULBUL CHAKRABORTY, AND NICHOLAS GROSS
proaches a nonzero fixed point asL approaches infinity. For
all other temperatures, this ratio approaches zero. The s
pling of the single-cell distribution functionPL(si) @Eq. ~6!#
leads to similar results forr L and uL , which is consistent
with the small value obtained forcL . These results suppor
the assumptions that went into the construction ofFGL($si%).

The results of this section will be contrasted with the fru
trated antiferromagnetic case in Sec. III. The application
the distribution-function technique to the TIAFM is based
the mapping to an interface model and height variables.
coarse graining of these height variables and the GL par
etrization are described in Sec. III.

III. RESULTS OF COARSE GRAINING
AND COMPARISON WITH THE GAUSSIAN THEORY

A. Height variables and coarse graining atTÄ0

One interesting property of the TIAFM is that the grou
state ensemble has a one-to-one mapping onto an inte
model @2,3,5#. This provides a simple way of studying th
properties of zero-temperature TIAFM.

The discrete variables in the interface model are he
variables$zl%, which are defined on each site of the triang
lar lattice. The mapping from the TIAFM to an interfac
model is realized by the mapping from spin variables$Sl% to
height variables$zl%. Specifying the height variable to b
zero at a chosen site, the following rules~Fig. 3! provide a
unique mapping from$Sl% to $zl%.

~1! Along the d1 direction, Dz521 for opposite spins
andDz512 for same spins.

~2! Along the d2 direction, Dz521 for opposite spins
andDz512 for same spins.

~3! Along the d3 direction, Dz511 for opposite spins
andDz522 for same spins.

These height assignments are unique up to the choic
origin as long as we restrict ourselves to Ising configurati
in the ground state ensemble, which is the set of states
do not have any completely frustrated plaquettes~all spins
are the same!. The microscopic Hamiltonian in terms o

FIG. 3. ~a! The three nearest-neighbor directionsd1 , d2 , d3 ,
and the six nearest neighbors~black dots! of discrete height vari-
ableszi ~open circle! mapped onto the rhombus-shaped lattice u
in the simulation.~b! The coarse-graining cell of sizeL52. The
vertices~black dots! of lattice are$zi% and the centers of the trian
gular plaquettes~open square! are$Hm%, each of which is defined a
the average of the three surroundingzi variables. The coarse
grained height variablehl is defined as the average of all theHm

variables within this cell.
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these height variables$zl% can be written directly from the
mapping as@2#

H$zl%52J(̂
i j &

~322uzi2zj u!.

The symmetries of the original Hamiltonian are reflected
H$zl%. These include Ising up-down symmetry and subl
tice symmetry. In addition,H$zl% has a symmetry with re-
spect to global, discrete shifts of the height variable. A d
tailed discussion of these symmetries can be found in B¨te
and Nightingale@3#. An interesting property of this mappin
is that for any ground state the height variable modulo 3
the same for all spins on the same sublattice.

Starting from $zl%, we can define a new set of heigh
variables$Hm% that are situated on the dual lattice, by ave
aging the three neighboringzl on each triangular plaquette
Hm5 1

3 (z11z21z3) wherez1 , z2 , and z3 are on the three
vertices of themth plaquette@12# as shown in Fig. 3. Since
the sum ofz1 , z2 , andz3 are multiples of 3, the$Hm% is a set
of integers.

We apply the coarse-graining technique to the height v
ables$Hm%. The coarse-graining cell is chosen to be a rho
bus with the linear sizeL and the coarse-grained height va
ables$hi% are defined as the average of all theHm within the
cell,

hi5
1

N (
mP i th

Hm ,

whereN is the total number ofHm variables within thei th
cell. The coarse-graining cell is depicted schematically
Fig. 3. AsL approaches infinity, the$hi% become continuous
variables. The effective field theory is based on these c
tinuous variables$hi%, which describe the roughness of th
interface. In the rough phase of the interface model, the
erage tilt of the interface, which is defined as the differen
between^hm& and ^hn& with the mth cell and thenth cell
separated by the system size, is zero. For an arbitrary
configuration, a tilt can be frozen in@5#. We will avoid such
configurations in our simulations. Also$^hi&% may be non-
zero for a general choice of height origin and the Ham
tonian should only depend on the fluctuationhi2^hi& @5#.

We performed Monte Carlo simulations on a system
size 6003600 shaped as a rhombus and looked at cell s
10, 15, 20, 30, 40, 50, 60, 75, and 100. We set the ini
configuration to be one of the flat states@12#, where$Hm% is
uniform in space. The dynamics we use in the simulation
single spin-flip Metropolis algorithm at zero temperatu
where the energy is not allowed to increase and thus no
spins are flippable. The first 20 000 configurations are d
carded to ensure that measurements are taken in equilibr
The time independence of average quantities such as
staggered magnetization was used as evidence that the
tem has relaxed to its equilibrium state. The sampling is d
every ten MC steps and for a total of 6000 configuratio
Since we use single spin-flip MC dynamics, the average
is unchanged from its initial value of zero during the M
runs@13#. In the following sections, we will usehi to repre-
senthi2^hi&.

d
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B. Results and comparison with the Gaussian theory

It has been conjectured@2,3# that in terms of the heigh
variables, the continuum theory for the zero temperat
TIAFM is Gaussian,

F„h~rW !…5E drW
c̄

2
@¹h~rW !#2 ~8!

with a value ofc̄5p/9. This stiffness constant was identifie
by Blöte et al. @5# through the correspondence between
exact calculation of the spin-spin correlation function in t
spin model@14# and the discrete height-height correlatio
function in real space in the interface model@5#. The stiff-
ness constant was also obtained numerically by Zeng
Henley from measurements of the discrete height correla
function in Fourier space@12#. In this section we deduce th
stiffness constant by an explicit construction of the coar
grained free energy.

Assuming a Ginzburg-Landau form for the Hamiltonia
in terms of the continuous height variables,

F„h~rW !…5E drWH ā

2
h~rW !21

c̄

2
@¹h~rW !#2J , ~9!

we proceed to obtainā and c̄ from our simulations by pa-
rametrizing the joint distribution function of the coars
grained height variablesPL(hi ,hj ).

As in the triangular ferromagnet, we study the neare
neighbor joint distribution function of heights,

PL~hi ,hj !5E )
lÞ i
lÞ j
^ i j &

dhl PL~$hl%!, ~10!

where PL($hl%) is the total cell distribution function. We
parametrize the joint distribution function as

PL~hi ,hj !5
1

Z8
exp$2@cL~hi2hj !

21aL~hi
21hj

2!#%,

~11!

whereZ8 is a normalization factor.
Anticipating a critical point atT50, whereaL→0, we

have neglected the quartic term in Eq.~11!. This will be
justified a posteriori from our numerical study. From th
joint distribution function, we can extractaL andcL as in the
ferromagnetic Ising model.

We examine a typicalPL(h,h* ) for cell sizeL550. One-
dimensional cuts ofPL(hi ,hj ) at different fixed valueshj
5h* are shown in Fig. 4. The peak and shape of the cuts
be deduced from the distribution function@Eq. ~11!# which is
a product of two Gaussians, exp(2aLh

2) and exp@2cL(h
2h* )2#. Whenh* differs from 0 by a large amount, the plo
in Fig. 4 show that the actual peak of the cut is much clo
to h* than to 0, which implies that the exp@2cL(h2h* )2# is
the dominant term in the product of Gaussians and
exp(2aLh

2) term acts more as a prefactor modulating t
amplitude of the peak. The width of the cut is also seen to
determined mainly bycL . Figure 4 indicates thataL is small
compared withcL . We also analyze the importance of high
e
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e

order gradient terms by measuring the non-Gaussian pa
eter (gL) in the distribution ofv5 1

2 (hi2hj ),

gL[12
^v4&L

3^v2&L
2

. ~12!

We findgL to be much smaller than 1, which is consiste
with the assumed form of the gradient term in the joint d
tribution function. Extracting quantitative information abo
the coefficientsaL andcL from fits to the distribution func-
tions turns out to be difficult because of the essential tw
dimensional nature of the distribution functionPL(hi ,hj )
(cL is large!. Instead, we resort to measurement of mome
for extracting quantitative information.

The parametersaL andcL can be related to the momen
of $hi%. We have calculated various moments of the
coarse-grained variables directly from the MC simulatio
In general, the parametrization of the joint distribution fun
tion @such as Eq.~11!# provides a connection between the
moments and the coefficients of the GL Hamiltonian. For
model of Eq.~11!, the relation betweenaL and cL and the
moments can be shown to be

aL5
1

2~^h2&1^h1h2&!
, ~13!

cL5
^h1h2&

2~^h2&1^h1h2&!~^h2&2^h1h2&!
, ~14!

implying that

cL

aL
5

^h1h2&

~^h2&2^h1h2&!
. ~15!

Hereh1 andh2 refer to coarse-grained height variables
nearest-neighbor cells separated by the coarse-graining
size L. These relations, between the parametersaL and cL
and the moments, also provide the connection betweenaL
and cL and the corresponding parametersā and c̄ in con-
tinuum field theories such as in Eq.~9!. Using the known

FIG. 4. The cuts of the probability distributionPL(h,h* ) for
cell sizeL550 and different values ofh* , demonstrating the domi-
nance of the gradient term~cf. text!. The heighth is a dimensionless
quantity.
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6430 PRE 61HUI YIN, BULBUL CHAKRABORTY, AND NICHOLAS GROSS
expressions for the correlations functions in the continu
model in two dimensions@15#, these relations are

ā54aLL22 ~16!

and

c̄52w0

ln~p!

p
cL . ~17!

The factorw05)/2 arises from the volume per unit cell i
the triangular lattice. The prediction from the Gauss
theory isā50 andc̄5p/9. We expect that, if the Gaussia
theory is correct, thenā should approach zero andc̄ should
remain constant asL→`. Because of the connection to th
continuum theory@Eq. ~16!#, it is natural to fitaL /L2 to a
second-order polynomial in 1/L. The results of the fitting are
shown in Fig. 5. The value ofā can be deduced from th
constant term extracted from the fitting and is found to
6.18331026, implying that the quadratic term in th
Ginzburg-Landau Hamiltonian becomes negligible asL
→`. It is difficult to extract the value ofc̄ from the mea-
sured values ofcL because of the fact that the errors increa
with L @16#. If, instead, we analyzecL /L2, the error bars
actually decrease with 1/L as seen from Fig. 6, and this pro
vides a more precise way of determining the value ofc̄. As
shown in Fig. 6, the data forcL /L2 can be fit very well to a
second-order polynomial in 1/L with vanishingly small coef-
ficients of the constant and linear term in 1/L. The value of
cL obtained from this fit is 0.622. The standard deviatio
calculated from the appropriate higher moments ofhi and
hj , based on Eqs.~13! and ~14!, are plotted as error bars.

FIG. 5. Plots ofāL5aL /L2 for different cell sizes. The open
circles are the data points and the solid line is the second de
polynomial fit. The error bars are obtained from the standard de
tions calculated from appropriate higher moments ofhi andhj . The
fitting of aL /L2 leads to a constant term with a value of 6.183E
which implies that the quadratic term in the field theoryā @cf. Eq.
~16!# becomes vanishingly small asL→`. The length is measured
in units of the lattice spacing andaL is dimensionless.
n

e

e

,

These results for the parameters obtained from our an
sis of the moments are completely consistent with the qu
tative behavior deduced from the joint distribution function
PL(hi ,hj ), shown in Fig. 4.

The results shown in Figs. 5 and 6 verify the Gauss
nature of the continuum theory. The numerical value oc̄
extracted by applying Eq.~17! to the fitted value ofcL is
0.392, which is in very good agreement with the conjectu
stiffness constant ofp/950.349@2,3#.

IV. HEIGHT-HEIGHT CORRELATION FUNCTION

In this section we will briefly present our calculation o
the correlation function of height variables in Fourier spa
i.e., the power spectrum of the height variable, which can
used to deduce the stiffness constant as in the investiga
of Zeng and Henley@12#. In Sec. V we further extend this
technique to study the defect-defect interactions at finite te
peratures by measuring the defect density correlation fu
tion.

As implied by Eq. ~8!, the stiffness constantc̄ of the
interface model can be directly related to the correlat
function of height variables$hi% in Fourier space,

F„h(rW)…5E drW
c̄

2
@¹h~rW !#25(

qW

c̄

2
uqW u2uh~qW !u2. ~18!

Thus, the correlation function̂uh(qW )u2& is

ee
a-

,

FIG. 6. Plots ofcL /L2 for different cell sizes. The open circle
are the data points and the solid line is the second degree pol
mial fit. The error bars are the standard deviations calculated f
appropriate higher moments ofhi and hj . The fitting of cL /L2

leads to a quadratic term with a coefficient 0.622, and vanishin
small constant and linear terms, which implies that the grad
term of the continuous theory@cf. Eq. ~17!#, c̄ approaches 0.392 a
L→`. The length is measured in units of the lattice spacing a
cL is dimensionless.
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^uh~qW !u2&5
1

c̄uqW u2
. ~19!

The stiffness constantc̄ can be extracted from a know
edge of ^uh(qW )u2&. Numerical measurements of^uh(qW )u2&
are, however, arduous, and instead, we study the correla
function of the discrete height variables,^uH(qW )u2&, which
should resemblêuh(qW )u2& for small q except for a factor of
)/2 coming from the volume per lattice site. Therefore, t
^uH(qW )u2& for small q can be written as

^uH~qW !u2&5
1

cuqW u2
, ~20!

where

c5
2

)
c̄. ~21!

We simulate a system of size 2403240. We start with the
same flat states as the ones used in the coarse-graining
lations. After discarding the first 20 000 configurations a
again, ensuring that equilibrium has been reached, the s
lations are sampled at every 10 MC steps for a total of 8
configurations. For each sampled configuration we calcu
uH(qW )u, the two-dimensional Fourier transform of the di
crete height variables$Hm% ~cf. Sec. III A! and average
uH(qW )u2 over the sampled MC configurations.

For simplicity, one-dimensional cuts of̂uH(qW )u2&21

along different directions inq space are shown in Fig. 7. A
seen from Fig. 7, different cuts collapse on top of one
other only for small values ofq2. This is due to the fact tha
the correlation function is isotropic for small values ofq
because of the sixfold rotational symmetry of the triangu
lattice. As seen from the inset, the anisotropy starts to
significant whenq2.1.6. We have fitted̂ uH(qW )u2&21 to a
second-order polynomial inq2, restricting the fitting region
to q2,0.2. A value ofc50.41460.016 was extracted from
the linear term of the fit. The nonlinear terms were small, a
an estimate of the error onc was obtained from the standar
deviation of the linear term extracted from fits to differe
segments of the curves (q2,0.2). From Eq.~21!, the stiff-
ness constant can be deduced to bec̄50.360, compared with
0.392 from our previous real space coarse-graining appro
andp/950.349 from Blöte and Hilhorst@5#.

The similarity of the results obtained from the real-spa
analysis and the power-spectrum analysis is quite remark
and underlines the strength of these numerical technique
comparison of the two different analysis techniques, ho
ever, makes it clear that the power-spectrum analysis is s
pler to implement and is the more desirable technique.
question of how well either of these techniques will fa
when applied to a model with general nonlinear interactio
where very little is known analytically, is still open.

V. DEFECT INTERACTIONS

At finite temperatures, there are completely frustra
plaquettes which can be viewed as vortex excitations in
height variable@2,3#. There are two types of vortices corre
on

u-
,
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sponding to the two different orientations of the frustrat
triangular plaquettes. These vortex excitations interact
charges via a two-dimensional Coulomb potential@3,8#.

An alternative to the Gaussian description is, therefore
Coulomb gas description involving electric and magne
charges corresponding to spin waves and vortices, res
tively @3,8#. This connection suggests that extracting effe
tive defect-defect interactions could be an alternative to c
structing coarse-grained free energies. In complica
models and especially in analyzing dynamics, this might
the more viable alternative. We therefore wanted to num
cally extract the effective vortex-vortex interaction in th
TIAFM and verify the Coulomb gas scenario.

In the regime of low defect density, where mean fie
theory is expected to hold, the effective interactions can
related to the density-density correlation function@17#. The
appropriate mean-field theory for our system with posit
and negative charges is Debye-Hu¨ckle theory @17# which
predicts that the charge-density correlation function has
following form:

^ur~q!u2&5
k2

4p

q2

q21k2
, ~22!

where

k254p~^n1&1^n2&! ~23!

is the square of an inverse Debye-Hu¨ckle screening length
^n6& are the average densities of positive and nega

FIG. 7. Plots of^uH(qW )u2&21 vs uqW u2. Different data sets are
from the cuts of two-dimensional data along different directions
q space. The correlation function shows significant anisotropy
q2>1.6. The value ofc50.41460.016 is obtained from the fitting
of curves in the regionq2,0.2 to a second-degree polynomial
q2. The stiffness constantc̄ deduced from this fit is 0.360. The
wave vectorq is measured in units of the inverse lattice spacing a
H(qW ) is dimensionless.
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charges andr(q)5n1(q)2n2(q), where n6(q) are the
Fourier transform of the real space charge density functio

If the vortices in our model behave as a Coulomb g
then we expect to find this behavior of the charge-den
correlation function at low temperatures where the vor
density is low.

We studied the charge density correlation function in
manner similar to that employed in the preceding section
studying the height-height correlation function. The M
simulations were performed on a 1203120 system and afte
discarding the first 10 000 configurations, samples w
taken every five configurations. Figure 8 shows the typi
defect density relaxations at different temperatures inve
gated in MC and it is clear that the time scale we choose
equilibrate the system is adequate. The correlation funct
^ur(q)u2&, was measured at several temperatures.

The simulation results are shown in Fig. 9 along with t
fits to the Debye-Hu¨ckle form @Eq. ~22!#. The figure shows a
one-dimensional cut of̂ur(q)u2& along a particular direction
In contrast to the height power spectrum, the defect den
power spectrum was found to be isotropic within the ran
of q studied. The Debye-Hu¨ckle theory models the data we
for all temperatures except the lowest temperature,T50.6,
which is shown in the inset. The lowest temperature dat
suspect because the defect density is low and statistics
difficult to obtain. The isotropy of thêur(q)u2& data imply
that the screening length and, therefore, the interactions
tween the defects on the triangular lattice is isotropic do
to length scales of the order of the lattice spacing.

FIG. 8. The relaxation of defect~number! density in the first
4000 MC steps at different temperatures. As seen from the p
defect densities relax to their equilibrium values by 4000 MC st
and fluctuate around it. The average defect density is 0.003, 0.
0.051, 0.0781, and 0.110, respectively, forT50.6, 1.0, 1.2, 1.5, and
2.0. The defect density is dimensionless and the time is measur
units of Monte Carlo steps.
s.
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FIG. 9. Plots of the charge density correlation function atT
51.0, 1.2, 1.5, and 2.0. The data points are taken from cuts
two-dimensional data along one chosen direction since we did
observe any anisotropy~cf. text!, and the solid lines are from the
fittings to a Debye-Hu¨ckle form@Eq. ~22!#. The fittings lead tok f

2 at
different temperatures. Thek f

2 and the analytical values ofka
2 ex-

tracted from the total defect density for the same temperature@cf.
Eq. ~23!# are shown in Fig. 10. The inset shows the fitting at t
lowest temperature,T50.6, where the defect density is 0.003 an
the results suffer from a lack of statistics. The correlation funct
^ur(q)u2& is dimensionless andq is measured in units of the invers
lattice spacing.

FIG. 10. Plots ofk f
2, the inverse screening length obtained fro

fitting compared toka
2, the value obtained from Eq.~23!. The two

curves deviate significantly only at the highest temperature wh
the defect picture itself starts to break down~cf. text!. The screen-
ing length is measured in units of the lattice spacing andT is mea-
sured in units ofJ/kB .
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From the fits to the Debye-Hu¨ckle theory the inverse
square of the screening lengthk2 can be extracted and com
pared to the analytic form given in Eq.~23!, which uses as an
input the measured defect density. In Fig. 10, the fitted v
uesk f

2 and the analytic valueska
2 are plotted versus tempera

ture. Except at the highest temperature,T52.0, the agree-
ment between the two different estimates is very go
Interestingly, the temperature at which the twok’s differ
significantly from each other is also where the defect den
differs from a simple Arrhenius prediction corresponding
an activation energy of 4J, the single-defect creation energ
The observation of the large defect density atT52.0, ^n1&
1^n2&50.110, indicates that the defects are covering
whole lattice at this temperature and the single-defect pic
becomes inappropriate.

These numerical studies show that it is possible to ext
effective defect-defect interactions from measurements of
defect-density power spectrum and verifies that the inte
tion, in the TIAFM, is Coulombic. A numerical measureme
of the force between defects has been made via a study o
dynamics of the defects in TIAFM@18#. This study could not
confirm the existence of a Coulomb force from the behav
of the defect density at long times; however, it was argu
that the force could not be falling off more slowly than 1/r .

VI. CONCLUSION

Based on a mapping to an interface model, we have c
structed a coarse-grained Hamiltonian for the ze
temperature TIAFM by studying the joint distribution fun
tion of the coarse-grained height variables. Our numer
f
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work confirms that the effective field theory is Gaussian
terms of the coarse-grained height variables and we obta
numerical estimate of the stiffness constant which is in
good agreement with the analytical prediction. The conn
tion between the parameters in joint distribution function a
the moments of height variables eliminates the arduous w
of directly relating the parameters of joint distribution fun
tion to those of the total distribution function. We also d
rectly measured the power spectrum of the height and
tained a value of the stiffness constant, which is very clos
the analytic prediction and the estimate from the real-sp
coarse graining. This suggests that the measurement o
power spectrum might provide a simple route towards
construction of effective field theories. We also demo
strated that effective defect-defect interactions can be
tracted from numerical studies of the defect-density pow
spectrum.

The compressible TIAFM@19,20# is currently being stud-
ied using these techniques. The effective field theory a
defect-defect interactions in this model are of interest for
study of alloys with the elastic interactions, and for the stu
of glassy dynamics@6#.
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@3# H. W. J. Blöte and M. P. Nightingale, Phys. Rev. B47, 15 046

~1993!.
@4# K. Binder, Z. Phys. B: Condens. Matter43, 119 ~1981!.
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